Abstract

AbstractIntermolecular singlet fission (SF) is an electronically coupled process between two chromophores, where distance dependences are decisive in terms of rates and yields. In the current work, a family of pentacene derivatives featuring different functional groups have been designed, synthesized, and probed with respect to intermolecular SF in the low, medium, and high concentration regimes rather than in the solid state. By means of advanced photophysical techniques, global analysis modeling, and ab initio calculations, a model for intermolecular SF is postulated. The model is based on an early key intermediate, which involves the diffusional encounter between one pentacene in its singlet excited‐state with another one in its ground state and which features excimer characteristics. This is followed by a transformation into a coupled triplet excited‐state. The role of the functional group appended to pentacene is analyzed with respect to steric shielding of the pentacene core as a means to prevent photophysical degradation, as well as control diffusional encounter and, subsequently, SF. The findings demonstrate the potential of new molecular materials for SF, especially in solution studies, as well as the challenges of implementing them in energy conversion schemes due to the appearance of photodegradation processes that compete with SF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.