Abstract

A cooperative Lewis acid/photocatalytic reduction of arylidene malonates yields a versatile radical anion species. This intermediate preferentially undergoes intermolecular radical-radical coupling reactions, and not the conjugate addition-dimerization reactivity typically observed in the single-electron reduction of conjugate acceptors. Reported here is the development of this open-shell species in intermolecular radical-radical cross couplings, radical dimerizations, and transfer hydrogenations. This reactivity underscores the enabling modularity of cooperative catalysis and demonstrates the utility of stabilized enoate-derived radical anions in intermolecular bond forming reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.