Abstract

A seven-dimensional potential energy surface is calculated for the interaction of water and carbon monoxide using second-order Moller-Plesset theory, coupled-cluster theory, and extrapolated intermolecular perturbation theory. The effects of stretching the CO molecule and bending the water molecule are included. The minimum energy structure of the water-CO dimer changes from an H-C hydrogen bond to an H-O hydrogen bond when the CO bond length increases by less than 10 pm from its equilibrium value. Second virial coefficients for the water-CO interaction are calculated for a wide range of temperatures and compared with the limited experimental data. Allowing the CO bond length and water bond angle to vary has little effect on the second virial coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.