Abstract

Abstract Graph theory applications within the physical sciences have a long history. However, it has never moved to the forefront of analytical techniques employed by the computational chemistry community. Though much of the earliest work leveraged percolation theory as a backdrop for understanding critical phenomena and phase transitions within statistical mechanical simulations, modern data science has much to contribute. Here, we focus on the realm of intermolecular networks, where vertices represent molecules or particles, and an edge represents an intermolecular or interparticle interaction. These interactions are widely understood to dictate many of the physical properties of soft matter, and for liquids in particular, understanding this network is essential. Consider the sheer volume of ∼70 years of literature associated with the hydrogen bond network of water, a topic that remains an active area of research even today. The aim of this work is twofold: first, to put into context prior algorithms and analyses that employed “connectedness theory” or lattice-based models to understand the intermolecular networks of chemical systems; and second to discuss a more general strategy for analyzing the multiscale structural and dynamic properties of chemical systems—intermolecular network theory. This approach encompasses foundational methods such as percolation theory, but also utilizes contemporary graph theoretical analyses that have evolved alongside the development of the World Wide Web, cloud computing, and big data. It is the realm of intermolecular network theory to determine the relationships between the essential physics of a system and the topological properties of the network and to derive new techniques in graph theory that can be related to the underlying physico-chemical or reactive properties of a system. Examples are used throughout this chapter that demonstrate applications to a wide variety of complex chemical systems, including ion association within electrolytes, mass transport and the properties of liquid–liquid phase boundaries, and multicomponent solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call