Abstract

In this paper, the nature of interactions between two cyanocarbons-tetracyanoethylene (TCNE) and fumaronitrile (FN)-and a series of four secondary amines possessing a general formula C4HxN (x = 5-11) is thoroughly scrutinized. For all of the TCNE-amine pairs, tricyanovinylation (TCV) reaction is observed; however, only for pyrrole, it is accompanied with a visible charge-transfer (CT) complex formation-no such chemical individuals, characteristic for TCNE, have been noticed for aliphatic and alicyclic amines. On the contrary, FN forms such complexes with all the amines studied. Interestingly, a rather unexpected reaction of FN with alicyclic amines has been observed. The recorded electron paramagnetic resonance (EPR) spectra indicate the presence of both TCNE●- and FN●- radicals in the analyzed samples, assigned to a complete charge (electron) transfer process within the CT complexes, whose efficiency can be additionally enhanced by photoirradiation. The origination of the former radical, whose presence is observed also in the TCNE-diethylamine mixture, is as well proposed to result indirectly from the TCV reaction, occurring for this system. Finally, the superhyperfine structure of EPR spectra, indicating the existence of some secondary interactions of the radicals with surrounding compounds, is discussed. Formation of CT complexes and tricyanovinylates has been investigated and characterized with UV-Vis spectroscopy, while the presence of (cyano)radicals in the analyzed mixtures has been evidenced by (photoinduced) EPR measurements. Interpretation of the experimental results is also supplemented with computer simulations including density functional theory calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.