Abstract
Extensive molecular dynamics simulations are carried out to study the molecular interactions, liquid states, and liquid/vapor properties of dichloromethane. The study is also extended to the equilibrium properties of the liquid/liquid interface of water-dichloromethane. The intermolecular interactions among water, dichloromethane, and water-dichloromethane are described using our polarizable potential models. The equilibrium properties of liquid dichloromethane, including the radial distribution functions, the intermolecular structural factor, the self-diffusion coefficient, and the dielectric constant, are evaluated. The dielectric constant is computed using Ewald summation techniques and the computed result compared reasonably well with the available experimental data. Properties such as surface tensions and density profiles of liquid/vapor dichloromethane are evaluated. We found that the computed surface tensions for several temperatures are in excellent agreement with experimental data. The computed density profile of the liquid/liquid interface of water-dichloromethane is averaged over 1 ns and we found the computed profile to be quite smooth and stable. The effect of polarization on the liquid/liquid interfacial equilibrium properties is evaluated by computing the dipole moments of water and dichloromethane molecules as a function of the distance normal to the interface. We found that these values deviated significantly from the simulations that are based on nonpolarizable potential models. We attribute these observations to the changes in the electric fields around the water and dichloromethane molecules near the interface.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.