Abstract
Supramolecular synthon is identified as a unit and provides important structural and energetic information in the study of organic crystals. However, the direct estimation of the supramolecular interaction remains challenging. In the present work six polyhalogenated di– or triamino pyridines were synthesised, their crystalline structure was characterised, and corresponding supramolecular synthons were studied using a combination of quantum mechanical calculations and FT–IR and Raman spectroscopy. Some distinctive features were identified especially for three vibrational normal modes (RNMs) related to the pyridine ring (viz. RNM1, RNM3 and RNM7) in the vibrational spectra (FT–IR and Raman) of the solid samples, which are due to the supramolecular interactions, hydrogen bond (hb) in particular, according to the quantum mechanical calculations. The comparison between the IR and Raman spectra of experimental and simulated results indicates that the adjacent intermolecular hydrogen bonds between two same molecules extensively exist in the solid samples. Moreover, some quantitative correlation was established among the dimerisation energies for hb dimers (hb1 dimers for compounds 1 and 2), the ring structure defined by the distribution of the substituents and quantitative characteristics of the vibrational spectra, for instance, the splitting magnitudes for RNM3(2) in IR spectra and the peak gap between RNM1 and RNM2 in Raman spectra.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.