Abstract

The lattice dynamics and molecular vibrations of benzene and deuterated benzene crystals are calculated from force constants derived from density-functional theory (DFT) calculations and compared with measured inelastic neutron-scattering spectra. A very small change (0.5%) in lattice parameter is required to obtain real lattice-mode frequencies across the Brillouin zone. There is a strong coupling between wagging and breathing modes away from the zone center. This coupling and sensitivity to cell size arises from two basic interactions. Firstly, comparatively strong interactions that hold the benzene molecules together in layers. These include an intermolecular interaction in which H atoms of one molecule link to the center of the aromatic ring of a neighboring molecule. The layers are held to each other by weaker interactions, which also have components that hold molecules together within a layer. Small changes in the lattice parameters change this second type of interaction and account for the changes to the lattice dynamics. The calculations also reveal a small auxetic effect in that elongation of the crystal along the b axis leads to an increase in internal pressure in the ac plane, that is, elongation in the b direction induces expansion in the a and c directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.