Abstract

The structure of the silica AST zeolites (octadecasil) synthesized in fluoride medium using tetramethylammonium (TMA) as the organic structure-directing agent has been reinvestigated using 14N NMR quadrupolar parameters and DFT calculations. The value of the experimental 14N quadrupolar coupling constant (CQ = 27 kHz) is larger than expected for a TMA cation possessing a high degree of motion. The analysis of a DFT-optimized octadecasil cluster along with the comparison between measured and calculated 14N NMR parameters demonstrate the presence of weak C-H...O hydrogen bonds between the TMA in the [46612] cages and the silica skeleton. These intermolecular interactions can be related to the presence of Si...F tetrel bonds within the [46] cages. These new results provide additional information with regard to the formation mechanisms and structure of the octadecasil zeolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.