Abstract

Estrogen receptor (ER) dimerization is prerequisite for its activation of target gene transcription. Because the two forms of ER, ERalpha and ERbeta, exhibit opposing functions in cell proliferation, the ability of ligands to induce ERalpha/beta heterodimers vs. their respective homodimers is expected to have profound impacts on transcriptional outcomes and cellular growth. However, there is a lack of direct methods to monitor the formation of ERalpha/beta heterodimers in vivo and to distinguish the ability of estrogenic ligands to promote ER homo- vs. heterodimerization. Here, we describe bioluminescence resonance energy transfer (BRET) assays for monitoring the formation of ERalpha/beta heterodimers and their respective homodimers in live cells. We demonstrate that although both partners contribute to heterodimerization, ligand-bound ERalpha plays a dominant role. Furthermore, a bioactive component was found to induce ERbeta/beta homodimers, and ERalpha/beta heterodimers but had minimal activity on ERalpha/alpha homodimers, posing a model that compounds promoting ERalpha/beta heterodimer formation might have therapeutic value. Thus, ER homodimer and heterodimer BRET assays are applicable to drug screening for dimer-selective selective ER modulators. Furthermore, this strategy can be used to study other nuclear receptor dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.