Abstract

The partition coefficients between particulate and gas phases (K p) for organic pollutants are of great importance to characterize the behavior of organic pollutants in atmosphere, and are basic data needed by ecological risk assessment. Partial least squares (PLS) regression with 16 theoretical molecular structural descriptors was used to develop polyparameter linear free energy relationship (LFER) model for K p of 18 aliphatic hydrocarbons, 21 polycyclic aromatic hydrocarbons (PAHs), 16 polychlorinated biphenyls (PCBs) and 13 polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). The obtained model has a good predictive ability and robustness, which can be used for estimating K p of chemicals with similar structures. Intermolecular dispersive interactions play a leading role in governing K p, followed by charge-transfer interactions and hindrance effects of molecular size. The respective models developed for different group compounds imply that the action mechanism is similar, and dipole-dipole and dipole-induced dipole interactions play a minor role in governing K p of n-alkanes, PCBs and PCDD/Fs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.