Abstract

In this article, the intermolecular interactions of cyclo[18]carbon with XCN (X = H, F, Cl, Br, I) were investigated in detail by quantum chemistry calculations and wavefunction analyses. The electrostatic potential and van der Waals potential of cyclo[18]carbon were examined, then the structures of the complexes, the interaction energies of the intermolecular interactions were studied. Quantum theory of atoms in molecules analysis was performed to help understand the specific interactions. The XCN molecules can insert into the cyclo[18]carbon ring, and ClCN, BrCN, and ICN could also bind with cyclo[18]carbon from outside. Charge transfer in the inner complex is more prominent than that of the outer complex. Plots of electron density difference revealed that electron density shift was significantly different when the X atom changed. The main driving force for molecular binding is dispersion attraction, which is disclosed by interaction region indicator analysis and energy decomposition calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call