Abstract
The rotational spectra of the 1:1 complex formed by acrolein and methanol and its deuterated isotopologues have been analyzed. Two stable conformations in which two hydrogen bonds between the two moieties are formed were detected. The rotational lines show a hyperfine structure due to the methyl group internal rotation in the complex and the V3 barriers hindering the motion were determined as 2.629(5) kJ mol-1 and 2.722(5) kJ mol-1 for the two conformations, respectively. Quantum mechanical calculations at the MP2/aug-cc-pVTZ level and comprehensive analysis of the intermolecular interactions, utilizing NCI and SAPT approaches, highlight the driving forces of the interactions and allow the determination of the binding energies of complex formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.