Abstract

In this work, a structural and electronic properties of 4-methoxybenzaldehyde (4MBA) have been presented. The density functional theory (DFT) along with B3LYP hybrid functional is employed. The optimized structure was found to be in well consistent with the X-ray diffraction geometry. The 4MBA crystal is stabilized by C-H⋯O intermolecular interactions along with π⋯π interactions. Various intermolecular interactions involved in 4MBA crystal have been analyzed deeply through topological atom-in-molecules (AIM) analysis and noncovalent interactions (NCI) method. Besides, Hirshfeld surface (HS) analysis and fingerprint plots are performed to determine the contribution of intermolecular contacts in 4MBA crystal packing. The electronic properties of the title compound have been investigated. Nonlinear optic (NLO) properties of 4MBA have been interpreted through the calculated first hyperpolarizability value. 4-substituted benzaldehydes, including 4MBA, are known with their competitive inhibitory activity on Tyrosinase, which also known as polyphenol oxidase (PPO). This enzyme is a rate limiting enzyme that controls the production of melamine and brown coloring of foods. Thus, molecular docking behaviors of 4MBA are presented in comparison with that of benzaldehyde (BA), 4-ethylBA, 4-tertbutylBA, 4-isoprophylBA, 4-propoxyBA, 4-butoxyBA, and Hexylresorcinol on four selected PPOs from sweet potato, grape, and mushroom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call