Abstract

Raman spectroscopy is used to study the complexes of 4,4′-dinitrobiphenyl with biphenyl, 4-hydroxybiphenyl, 4-bromobiphenyl and p-terphenyl, which crystallize in a highly unusual geometry. Their phonon spectra at 125 K and 18 K are compared and the effect of isotopic substitution of biphenyl on the phonon spectra of its complex is examined. Internal vibrations of the components in the crystalline complex are compared with those observed in the pure crystals of the components. The results from both phonon and intramolecular vibration studies show that these complexes form in fixed stoichiometries, are governed by geometrical factors, and are stabilized primarily by van der Waals interaction, although other kinds of interactions may provide additional stabilization. The 4,4′-dinitrobiphenyl molecule as well as biphenyl and p-terphenyl are centrosymmetric and remain so when the complexes are cooled from room temperature to 18 K. For biphenyl complex, this conclusion is supported by the observed IR spectra which show mutual exclusion between IR-active and Raman active vibrations. Crystal splitting is observed on the 410 cm −1 vibration of 4,4′-dinitrobiphenyl. This splitting is attributed to the presence of more than one 4,4′-dinitrobiphenyl molecules in the complex unit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call