Abstract

Integral cross sections and pressure broadening coefficients have been measured for the acetylene-krypton complex, by molecular beam scattering and by high resolution IR spectroscopy, respectively. A new potential energy surface (PES) is proposed to describe structure and dynamical properties of this prototypical weakly bound complex. The PES has been parametrized exploiting a novel atom-bond pairwise additive scheme and has been fitted to the experimental data. A similar PES has been obtained for the acetylene-xenon system by a proper scaling of the interaction parameters of the krypton case, based on empirical considerations. These PESs together with that recently proposed by the same authors [J. Phys. Chem. 109, 8471 (2005)] for the acetylene-argon case have been employed for close coupling calculations of the pressure broadening cross sections and for a characterization of the rovibrational structure of the complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.