Abstract

The intermolecular interaction force of actin was studied by a dynamic light scattering technique. The mutual diffusion coefficients (D) of monomeric actin were accurately determined in a G-buffer with a low concentration of KCl from 0 to 10 mM. The translational diffusion coefficient was obtained as D(0) = (87 +/- 3) x 10(-12) m(2).s(-1) at 25 degrees C and pH 7.4, which gives a hydrodynamic radius of monomeric actin of r(H) = 2.8 +/- 0.1 nm. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, assuming electrostatic and van der Waals potentials, failed to describe the change in interaction parameter (lambda) with KCl concentration, but the extended DLVO theory succeeded if an additional repulsive potential was assumed. The Hamaker constant of actin in the Ca(2+)-ATP bound state was determined for the first time as A(H) = 10.4 +/- 0.6 k(B)T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.