Abstract

Fourier-transform infrared (FTIR) spectra of isopentyl-alcohol dissolved in carbon tetrachloride (CCl4) were recorded as a function of concentration and temperature. Dilute isopentyl alcohol/CCl4 solutions were prepared in alcohol at concentrations of 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.001 and 0.0005 M. Infrared absorption measurements were taken within a temperature range of 17-67 °C below the boiling point of the solutions. Decomposition of the spectral features corresponding to associated and unassociated species was performed to quantitatively follow the effect of temperature and concentration on intermolecular hydrogen bonding (HB) in isopentyl alcohol. The spectral feature in the 3600-3650 cm-1 frequency range attributed to the free OH stretching band was studied in detail to determine changes based on concentration and temperature variations. Computational methodologies were applied to evaluate the energetics and vibrational properties of the species involved in the structure in the gaseous state where no interactions are present. The results are discussed in view of relevant structural models to gain quantitative information concerning the effect of concentration and temperature on intermolecular hydrogen bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.