Abstract

A thorough computational exploration of the mechanistic intricacies of the intermolecular hydroamination (HA) of vinylarenes by a recently reported class of kinetically stabilised iminoanilide [{N^N}Ae{N(SiMe3)2}⋅(THF)n] alkaline-earth amido compounds (Ae = Ca, Sr, Ba) is presented. Two distinct mechanistic pathways for catalytic HA mediated by alkaline-earth and rare-earth compounds have emerged over the years that account equally well for the specific features of the process. On one hand, a concerted proton-assisted pathway to deliver the amine product in a single step can be invoked and, on the other, a stepwise σ-insertive pathway that comprises a rapid, reversible migratory olefin insertion step linked to a less facile, irreversible Ae-C alkyl bond aminolysis. The results of the study presented herein, which employed a heavily benchmarked and reliable DFT methodology, supports a stepwise σ-insertive pathway that involves fast and reversible migratory C=C bond insertion into the polar Ae-N pyrrolido σ bond. This proceeds with strict 2,1 regioselectivity via a highly polarised four-centre transition state (TS) structure, linked to irreversible intramolecular Ae-C bond aminolysis of the alkaline-earth alkyl intermediate as the energetically favourable mechanism. Turnover-limiting aminolysis is consistent with the significant KIE measured; the DFT-derived effective barrier matches the Eyring parameter empirically determined for the best-performing {N^N}Ba(NR2) catalyst gratifyingly well. It also predicts the observed trend in reactivity (Ca<Sr<Ba) correctly and the computationally estimated primary KIE is close to the observed values. Non-competitive kinetic demands militate against the operation of the alternative concerted proton-assisted pathway, which describes N-C bond formation triggered by concomitant amino proton transfer at the C=C linkage via a multi-centre TS structure. A detailed comparison of {N^N}Ae(NR2) catalysts revealed that the variation in the Ae-pyrrolido bond strength together with the degree of protection of the alkaline earth by a sterically encumbering iminoanilide ligand scaffold not only profoundly influences the performance in HA catalysis, but also the likelihood of traversing rival mechanistic pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.