Abstract

An operationally simple and atom-economical method for the E-selective preparation of enol ethers is described. A novel dicarbonyl(5-phenyldipyrrinato)rhodium complex, 2, was prepared in four synthetic steps, characterized by X-ray crystallography and NMR spectroscopy, and then investigated as a catalyst for the intermolecular hydroalkoxylation of terminal alkynes. Solvent and substrate studies were used to gain insight into the mechanism of the reaction. Cyclic voltammetry was also used to investigate the electronic properties of 2. The rhodium(I)-catalyzed intermolecular alkyne hydroalkoxylation reaction reported here mediates excellent substrate transformation with a high degree of E/Z selectivity which is opposite to that reported previously using alternative catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.