Abstract

Organic-inorganic hybrid phase-transition materials have attracted widespread attention in energy storage and sensor applications due to their structural adaptability and facile synthesis. However, increasing the phase-transition temperature (Tc) effectively remains a formidable challenge. In this study, we employed a strategy to regulate intermolecular interactions (different types of hydrogen bonds and other weak interactions), utilizing bismuth chloride as an inorganic framework and azetidine, 3,3-difluoro azetidine, and 3-carboxyl azetidine as organic components to synthesize three compounds with different Tc values: [C3H8N]2BiCl5 (1, 234 K), [C3H6NF2]3BiCl6 (2, 256 K), and [C4H8O2N]3BiCl6 (3, 350 K). 1 is a one-dimensional chain structure and 2 and 3 are zero-dimensional structures. Analysis of the crystal structure and the Hirshfeld surface and 2D fingerprints further suggests that the intermolecular forces are efficiently modulated. These findings emphasize the efficacy of our strategy in enhancing Tc and may facilitate further research in this area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call