Abstract

We have developed an efficient theoretical framework of a non-Born–Oppenheimer (non-BO) nuclear and electron wave packet (NWP and EWP) method and applied it to intra- and intermolecular energies of a hydrogen dimer. The energy surface functions were derived at low computational cost. In contrast with the ordinary BO nuclear quantization on a given energy surface that reduces the effective barrier, non-trivial non-BO interactions between the EWPs and NWPs resulted in increases of intermolecular rotational and translational barriers. A direct comparison demonstrated that the non-BO effect on the intermolecular energy is significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.