Abstract

We investigate sea level changes in the western North Pacific for twenty-first century climate projections by analyzing the output from 15 coupled models participating in the Coupled Model Intercomparison Project phase 3 (CMIP3). Projected changes in the wind stress due to those in sea level pressure (SLP) result in the projected sea level changes. In the western North Pacific (30−50°N, 145−170°E), the inter-model standard deviation of the sea level change relative to the global mean is comparable to that based on the multi-model ensemble (MME) mean. Whereas a positive SLP change in the eastern North Pacific (40−50°N, 170−150°W) induces a large northward shift of the Kuroshio Extension (KE), a negative SLP change in this region induces a strong intensification of the KE. Large inter-model variability of the SLP projection in the eastern North Pacific causes a large uncertainty of the sea level projection in the western North Pacific. Models with a larger northward shift (intensification) of the KE exhibit a poleward shift (an intensification) of the Aleutian Low (AL) larger than that for the MME mean. However, models that exhibit a larger intensification of the AL do not necessarily show a larger intensification of the KE. Our analysis suggests that the SLP change that induces an intensification of the KE is associated with a teleconnection from the equatorial Pacific, and that the SLP change that induces a northward shift of the KE is characterized by a zonal mean change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call