Abstract

The East Asian westerly jet (EAJ), an important midlatitude circulation of the East Asian summer monsoon system, plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupled models can generally capture the intensity and location of the climatological summer EAJ. However, individual models still exhibit large discrepancies. This study investigates the intermodel diversity in the longitudinal location of the simulated summer EAJ climatology in the present-day climate and its implications for rainfall over East Asia based on 20 CMIP5 models. The results show that the zonal location of the simulated EAJ core is located over either the midlatitude Asian continent or the western North Pacific (WNP) in different models. The zonal shift of the EAJ core depicts a major intermodel diversity of the simulated EAJ climatology. The westward retreat of the EAJ core is related to a warmer mid-upper tropospheric temperature in the midlatitudes, with a southwest-northeast tilt extending from Southwest Asia to Northeast Asia and the northern North Pacific, induced partially by the simulated stronger rainfall climatology over South Asia. The zonal shift of the EAJ core has some implications for the summer rainfall climatology, with stronger rainfall over the East Asian continent and weaker rainfall over the subtropical WNP in relation to the westward-located EAJ core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call