Abstract

We investigated nonrigid co-registration of PET and MR breast images to improve diagnostic specificity in difficult-to-interpret mammograms, and ultimately to avoid biopsy. A deformable breast model based on a finite-element method (FEM) was employed. The FEM loads were taken as the observed intermodal displacements of several fiducial skin markers placed on the breast and visible in PET and MRI. The analogy between orthogonal components of the displacement field and the temperature differences in a steady-state heat transfer (SSHT) in solids was adopted. The model allows estimation of the intermodal breast deformation for every location within the breast. To test our model, an elastic breast phantom with simulated internal lesions and external markers was imaged with PET and MRI. We estimated fiducial- and target-registration errors vs. number and location of the fiducials. We established that SSHT approach using external fiducial markers is accurate to within /spl sim/5 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.