Abstract

Stimulated Raman scattering is investigated in a slightly multimode gas-filled hollow-core photonic crystal fiber. Although, second-order Stokes light appears in the fundamental mode below a certain threshold energy, it is observed to switch to a two-lobed higher order mode above this threshold. Conversion to the higher order mode is made possible by the creation of a two-lobed moving coherence wave in the gas that provides both phase-matching and a strong intermodal pump-Stokes overlap. A theoretical model is developed, based on this physical interpretation that agrees quantitatively with the experimental results. The results suggest new opportunities for all-fiber gas-based nonlinear processes requiring phase-matching, such as coherent anti-Stokes Raman scattering, as well as providing a means (for example) of efficiently converting light from a higher order pump mode to a fundamental Stokes mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call