Abstract
Improving dynamic balance can prevent falls in humans with neurological and mechanical deficits. Dynamic balance requires the neural integration of multisensory information to constantly assess the state of body mechanics. Prior research found that intermittent visual rotations improved balance training during walking on a narrow beam, but limitations from the immersive virtual reality headset hindered balance training effectiveness overall. We theorized that intermittent visual occlusions with electrically controlled liquid crystal glasses would overcome the previous limitations of the immersive virtual reality headset and provide a means to enhance dynamic balance training efficacy. Forty healthy young individuals walked on a treadmill-mounted balance beam for 30 min (20 subjects with intermittent visual occlusions and 20 subjects with unperturbed vision). Balance performance, in number of step-offs of the beam, improved by 78% for the visual occlusions group on the same day of the training, a near fourfold improvement compared to the 21% improvement for the unperturbed vision group (t(38) = –5.2, p < 0.001). The difference between groups was also apparent 2 weeks later testing for retention (60% improvement for the visual occlusions group, 5% for the unperturbed vision group; t(38) = –4.2, p < 0.001). Intermittent visual occlusions are likely a simple method for enhancing balance training in dynamic motor tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.