Abstract

It is not clear as to whether weight bearing and ambulation may affect bone growth. Our goal was to study the role of mechanical loading (one of the components of ambulation) on endochondral ossification and longitudinal bone growth. Thus, we applied cyclical, biologically relevant strains for a prolonged time period (4 weeks) to one tibia of juvenile mice, while using the contralateral one as an internal control. By the end of the 4-week loading period, the mean tibial growth of the loaded tibiae was significantly greater than that of the unloaded tibiae. The mean height and the mean area of the loaded tibial growth plates were greater than those of the unloaded tibiae. In addition, in female mice we found a greater expression of PTHrP in the loaded tibial growth plates than in the unloaded ones. Lastly, microCT analysis revealed no difference between loaded and unloaded tibiae with respect to the fraction of bone volume relative to the total volume of the region of interest or the tibial trabecular bone volume. Thus, our findings suggest that intermittent compressive forces applied on tibiae at mild-moderate strain magnitude induce a significant and persistent longitudinal bone growth. PTHrP expressed in the growth plate appears to be one growth factor responsible for stimulating endochondral ossification and bone growth in female mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.