Abstract
Objectives. It has previously been demonstrated that 15-min continuous insulin infusion at immediate reperfusion affords cardioprotection. This study sought to reduce the treatment time of insulin and test if intermittent insulin infusions can mimic ischemic postconditioning. Design. In a Langendorff perfused rat heart model of regional ischemia, hearts were at the onset of reperfusion subjected to either 5- or 1-min continuous insulin infusion or 3 × 30 s intermittent insulin infusions (InsPost); with or without inhibitors of Akt (SH-6), p70s6-kinase (rapamycin), mitochondrial ATP-sensitive potassium channels (5-hydroxydecanoic acid [5-HD]), or a scavenger of reactive oxygen species (ROS; 2-mercaptopropionyl glycine [MPG]). Infarct size is expressed as percent of area at risk and presented as mean ± standard error of the mean or s.e.m. Results. Only InsPost was able to reduce infarct size compared with controls (InsPost 33 ± 6% vs. Ctr 52 ± 4%, p < 0.05.). This cardioprotection was abrogated by co-administering SH-6, rapamycin, 5-HD, or MPG. (InsPost + SH-6 56 ± 9%, InsPost + Rapa 55 ± 8%, InsPost + 5-HD 56 ± 7%, InsPost + MPG 60 ± 3% vs. InsPost 33 ± 6% p < 0.05). These results were corroborated by a significant increase in phosphorylated Akt and p70s6k in the InsPost group compared with controls. Conclusion. Short intermittent insulin infusions can mimic ischemic postconditioning and reduce myocardial infarct size via Akt/p70s6k and mKATP channels/ROS-dependent signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.