Abstract

BackgroundRecently, increased tumor incidence and cancer-related mortality have been reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), the hallmark feature of OSA, contributes to the metastasis of tumors. However, the molecular mechanisms by which tumor metastasis is accelerated by OSA-like IH remain to be elucidated.MethodsC57BL/6 J male mice were subjected to intravenous injection of B16F10 melanoma cells before receiving IH treatment. Then, the animals were randomly distributed into three groups (n = 8 each): normoxia (N) group, IH group, and antioxidant tempol group (IHT, exposed to IH after treatment with tempol). After the mice were sacrificed, the number and weight of lung metastatic colonies were assessed. The lung tissues with tumor metastasis were analyzed for markers of oxidative stress and inflammation and for HIF-1α using western blotting and real-time PCR (qRT-PCR). The level of reactive oxygen species (ROS) in B16F10 cell was also assessed after N, IH and IH with tempol treatments.ResultsCompared with normoxia, IH significantly increased the number and weight of mouse lung metastatic colonies. Treatment of B16F10 cells with IH significantly enhanced ROS generation. Lung tissues with tumor metastasis provided evidence of increased oxidative stress, as assessed by p22phox and SOD mRNA levels and the NRF2 protein level, as well as increased inflammation, as assessed by TNF-α and IL-6 mRNA levels and the NF-κB P65 protein level. HIF-1α protein levels were increased in response to IH treatment. Tempol, an important antioxidant, ameliorated IH-induced melanoma lung metastasis in mice and reduced oxidative stress and inflammation responses.ConclusionsThese results support the hypothesis that oxidative stress and inflammation responses play an important role in the pathogenesis of OSA-like IH-induced melanoma lung metastasis in mice. Antioxidant intervention provides a novel strategy for the prevention and treatment of cancer in OSA populations.

Highlights

  • Increased tumor incidence and cancer-related mortality have been reported among patients with obstructive sleep apnea (OSA)

  • OSA-like Intermittent hypoxia (IH) promotes melanoma lung metastasis The number of lung metastatic melanomas was determined at day 21 after the exposure to N, IH and IHT

  • The weight of lung metastases in the IHT group was decreased when compared with that of the IH group (Fig. 1c) (P < 0.05). These findings suggested that OSA-like IH increased melanoma metastasis in the lung, and this enhancement effect was prevented by pretreatment with the antioxidant tempol (Fig. 1a, b, c)

Read more

Summary

Introduction

Increased tumor incidence and cancer-related mortality have been reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), the hallmark feature of OSA, contributes to the metastasis of tumors. The molecular mechanisms by which tumor metastasis is accelerated by OSA-like IH remain to be elucidated. Several epidemiological studies have demonstrated that cancer progression and cancer-related mortality are accelerated in patients with OSA [9,10,11,12,13,14]. Animal studies indicate that OSA-like IH enhances the growth, invasion and metastasis of tumors [17,18,19,20]. The underlying mechanisms for this OSA-like IH-induced tumor metastasis are not completely understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call