Abstract

Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data. It is found that the fluctuation amplitudes in the near scrape-off layer follow a normal distribution while the far scrape-off layer fluctuations are dominated by large amplitude bursts due to radial motion of blob-like structures and have a positively skewed and flattened amplitude probability distribution. Conditional averaging of the time series reveals burst wave forms with a fast rise and slow decay and exponentially distributed burst amplitudes and waiting times. Based on this, a stochastic model of the burst dynamics is constructed. The model predicts that fluctuation amplitudes should follow a Gamma distribution and that there is a parabolic relation between the skewness and the kurtosis moments of the fluctuations. This is shown to compare favorably with the gas puff imaging data over a range of line-averaged plasma densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call