Abstract

Intermittent fasting (IF) and high intensity interval training (HIIT) are effective lifestyle interventions for improving body composition and overall health. However, the long-term effects of IF and potential synergistic effects of combining IF with exercise are unclear. The purpose of the study was to investigate the long-term effects of IF, with or without HIIT, on body composition and markers of metabolic health in diet-induced obese mice. In a randosmised, controlled design, 8-week-old C57BL/6 mice (males (n = 39) and females (n = 49)) were fed a high fat (HF) and sugar (S) water diet (30% (w/v)) for 24-weeks but were separated into five groups at 12-weeks: (1) ‘obese’ baseline control (OBC); (2) no intervention (CON); (3) intermittent fasting (IF); (4) high intensity intermittent exercise (HIIT) and (5) combination of dietary and exercise intervention (IF + HIIT). Body composition, strength and blood variables were measured at 0, 10 and/or 12-weeks. Intermittent fasting with or without HIIT resulted in significantly less weight gain, fat mass accumulation and reduced serum low density lipoproteins (LDL) levels compared to HIIT and CON male mice (p < 0.05). The results suggest that IF, with or without HIIT, can be an effective strategy for weight gain prevention despite concurrently consuming a high fat and sugar diet.

Highlights

  • Obesity is a complex multifaceted disease resulting from the interplay between genetics and lifestyle, including economic growth, modernization, and urbanization [1]

  • The rapid rise in obesity prevalence appears to be a reflection of the changes in dietary and behavioural patterns, with eating habits shifting to greater consumption of energy-dense foods that are high in fats and sugars, while at the same time, levels of physical activity are decreasing

  • At the end of the diet and/or exercise intervention period, low density lipoproteins (LDL) levels were significantly lower in the male Intermittent fasting (IF) and IF + high intensity interval training (HIIT) groups compared to controls, whereas female mice demonstrated significantly lower TAG levels in the IF + HIIT group compared to HIIT group

Read more

Summary

Introduction

Obesity is a complex multifaceted disease resulting from the interplay between genetics and lifestyle, including economic growth, modernization, and urbanization [1]. The rapid rise in obesity prevalence appears to be a reflection of the changes in dietary and behavioural patterns, with eating habits shifting to greater consumption of energy-dense foods that are high in fats and sugars, while at the same time, levels of physical activity are decreasing. These differences in energy intake and expenditure, often referred to as energy balance, have direct implications for weight regulation, with even small deviations in daily energy balance resulting in large body weight changes over the long term [2]. IF appears to present an alternative and equivalent option to the traditional diets involving continuous energy restriction as a way to improve body composition and other health markers [9]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call