Abstract

Metabolic syndrome is characterized by central obesity, insulin resistance, elevated blood pressure, and dyslipidemia. Metabolic syndrome is a significant risk factor for several common cancers (e.g., liver, colorectal, breast, pancreas). Pharmacologic treatments used for the components of the metabolic syndrome appear to be insufficient to control cancer development in subjects with metabolic syndrome. Murine models showed that cancer has the slowest progression when there is no food consumption during the daily activity phase. Intermittent fasting from dawn to sunset is a form of fasting practiced during human activity hours. To test the anticancer effect of intermittent fasting from dawn to sunset in metabolic syndrome, we conducted a pilot study in 14 subjects with metabolic syndrome who fasted (no eating or drinking) from dawn to sunset for more than 14 h daily for four consecutive weeks. We collected serum samples before 4-week intermittent fasting, at the end of 4th week during 4-week intermittent fasting and 1 week after 4-week intermittent fasting. We performed serum proteomic analysis using nano ultra-high performance liquid chromatography-tandem mass spectrometry. We found a significant fold increase in the levels of several tumor suppressor and DNA repair gene protein products (GP)s at the end of 4th week during 4-week intermittent fasting (CALU, INTS6, KIT, CROCC, PIGR), and 1 week after 4-week intermittent fasting (CALU, CALR, IGFBP4, SEMA4B) compared with the levels before 4-week intermittent fasting. We also found a significant reduction in the levels of tumor promoter GPs at the end of 4th week during 4-week intermittent fasting (POLK, CD109, CAMP, NIFK, SRGN), and 1 week after 4-week intermittent fasting (CAMP, PLAC1) compared with the levels before 4-week intermittent fasting. Fasting from dawn to sunset for four weeks also induced an anti-diabetes proteome response by upregulating the key regulatory proteins of insulin signaling at the end of 4th week during 4-week intermittent fasting (VPS8, POLRMT, IGFBP-5) and 1 week after 4-week intermittent fasting (PRKCSH), and an anti-aging proteome response by upregulating H2B histone proteins 1 week after 4-week intermittent fasting. Subjects had a significant reduction in body mass index, waist circumference, and improvement in blood pressure that co-occurred with the anticancer, anti-diabetes, and anti-aging serum proteome response. These findings suggest that intermittent fasting from dawn to sunset actively modulates the respective genes and can be an adjunct treatment in metabolic syndrome. Further studies are needed to test the intermittent fasting from dawn to sunset in the prevention and treatment of metabolic syndrome-induced cancers.

Highlights

  • Metabolic syndrome is characterized by central obesity, insulin resistance, elevated blood pressure, and dyslipidemia

  • We found a significant reduction in cathelicidin antimicrobial peptide (CAMP) and placenta enriched 1 (PLAC1) gene protein products (GP) levels 1 week after 4-week intermittent fasting compared with the levels before 4-week intermittent fasting

  • In accord with the findings of these murine and human ­studies[13,25], we found a significant fold increase in the levels of specific tumor suppressor/anticancer proteins at the end of 4th week during 4-week intermittent fasting from dawn to sunset and/or 1 week after 4-week intermittent fasting from dawn to sunset, including CALR, CALU, INTS6, KIT, CROCC, PIGR, insulin-like growth factor-binding protein 4 (IGFBP4), and semaphorin 4B (SEMA4B) that are downregulated in several cancers resulting in cancer metastasis and poor prognosis (Table 2, Fig. 2)

Read more

Summary

Introduction

Metabolic syndrome is characterized by central obesity, insulin resistance, elevated blood pressure, and dyslipidemia. Subjects had a significant reduction in body mass index, waist circumference, and improvement in blood pressure that co-occurred with the anticancer, anti-diabetes, and anti-aging serum proteome response These findings suggest that intermittent fasting from dawn to sunset actively modulates the respective genes and can be an adjunct treatment in metabolic syndrome. In none of these studies, proteomic profiling was performed to understand the mechanism behind the anticancer effect of intermittent fasting and time-restricted eating in subjects with metabolic syndrome To this end, we hypothesized that intermittent fasting from dawn to sunset practiced exclusively during the human activity hours for four weeks would be associated with an anticancer serum proteome response, upregulate anticancer proteins and regulatory proteins of DNA repair and insulin signaling, and downregulate pro-cancer proteins

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.