Abstract

Epidemiological studies have reported an association between exposure to extremely low frequency electromagnetic fields (ELF-EMFs) and increased risk of cancerous diseases, albeit without dose-effect relationships. The validity of such findings can be corroborated only by demonstration of dose-dependent DNA-damaging effects of ELF-EMFs in cells of human origin in vitro. Cultured human diploid fibroblasts were exposed to intermittent ELF electromagnetic fields. DNA damage was determined by alkaline and neutral comet assay. ELF-EMF exposure (50 Hz, sinusoidal, 1-24 h, 20-1,000 mu T, 5 min on/10 min off) induced dose-dependent and time-dependent DNA single-strand and double-strand breaks. Effects occurred at a magnetic flux density as low as 35 mu T, being well below proposed International Commission of Non-Ionising Radiation Protection (ICNIRP) guidelines. After termination of exposure the induced comet tail factors returned to normal within 9 h. The induced DNA damage is not based on thermal effects and arouses concern about environmental threshold limit values for ELF exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.