Abstract

This study investigated the effects of exposure to an intermittent homotypic stressor on: (i) habituation of acute autonomic responsivity (i.e. cardiac sympathovagal balance and susceptibility to arrhythmias), and (ii) circadian rhythmicity of heart rate, body temperature, and physical activity. After implantation of a transmitter for the radiotelemetric recording of electrocardiogram (ECG), body temperature and physical activity, adult male rats ( Rattus norvegicus, Wild Type Groningen strain) were repeatedly exposed (10 consecutive times, on alternate days) to either a social stressor (defeat by a con-specific, n =15 ) or an open-field, control challenge (transfer to a new cage; n =8 ). ECGs, body temperature and physical activity were continuously recorded in baseline, test and recovery periods (each lasting 15 u min), at the 1st and 10th episodes of both defeat and open-field challenge. The circadian rhythms of heart rate, body temperature and physical activity were monitored before (5 days), during (16 days) and after (21 days) the intermittent stress protocol. This study indicates that there is no clear habituation of either acute cardiac autonomic responsivity (as estimated by means of time-domain indexes of heart rate variability) or arrhythmia occurrence to a brief, intermittent, homotypic challenge, regardless of the nature of the stressor (social or non-social). On the other hand, rats exposed to social challenge also failed to show adaptation of acute temperature and activity stress responsiveness, whereas rats facing open-field challenge developed habituation of activity and sensitization of temperature responses. Repeated social challenge produced remarkable reductions of the heart rate circadian rhythm amplitude (this effect being significantly greater than that produced by intermittent open-field), but only minor changes in the daily rhythms of body temperature and physical activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.