Abstract

In this work a framework is presented for addressing the issue of intermittent communications faced by autonomous unmanned maritime vehicles operating at sea. In particular, this work considers the subject of predictive atmospheric signal transmission over multi-path fading channels in maritime environments. A Finite State Markov Channel is used to represent a Nakagami-m modeled physical fading radio channel. The range of the received signal-to-noise ratio is partitioned into a finite number of intervals which represent application-specific communications states. The Advanced Propagation Model (APM), developed at the Space and Naval Warfare Systems Center San Diego, provides a characterization of the transmission channel in terms of evaporation duct induced signal propagation loss. APM uses a hybrid ray-optic and parabolic equations model which allows for the computation of electromagnetic (EM) wave propagation over various sea and/or terrain paths. These models which have been integrated in the proposed framework provide a strategic and mission planning aid for the operation of maritime unmanned vehicles at sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.