Abstract

The plateau burning behavior of composite solid propellants consisting of ammonium perchlorate (AP) and hydrocarbon (HC) binder with a bimodal AP particle size distribution (coarse and fine) is examined. The focus is the weak pressure dependence of the propellant burn rate (i.e., a plateau) in an intermediate range of about 2.7-6.9 MPa (-400-1000 psi). The relationship between the appearance of this mid-pressure plateau for a composite propellant and self-extinction during the burning of the corresponding fine AP/binder matrix (i.e., the propellant formulation without the coarse AP particles) is experimentally examined through the study of a compositional array of propellants, sandwiches (two-dimensional propellants) and matrixes. The burning history of the samples was captured with a highspeed digital camera, and surfaces from quenched samples (burning that was self-extinguished or intentionally interrupted) are analyzed using a scanning electron microscope. The combined results indicate the prevalence of intermittent burning of the matrixes as the pressure is varied across the boundary between continuous burning and self-extinction (burn/no-burn boundary). The burning surfaces are marked by extreme threedimensionality coupled with a redistribution of the fine AP particles and the binder. The results point to the need for a more realistic approach to the underlying processes that contribute to plateau burning rate trends in bimodal composite propellants than has been adopted hitherto.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call