Abstract

In iteroparous species, it is easier to estimate Nb (effective number of breeders in one reproductive cycle) than Ne (effective population size per generation). Nb can be used as a proxy for Ne and also can provide crucial insights into eco-evolutionary processes that occur during reproduction. We used analytical and numerical methods to evaluate effects of intermittent breeding and litter/clutch size on inbreeding Nb and Ne . Fixed or random litter sizes ≥ 3 have little effect on either effective-size parameter; however, in species (e.g., many large mammals) in which females can produce only one offspring per cycle, female Nb = ∞ and overall Nb = 4Nb (male) . Intermittent breeding reduces the pool of female breeders, which reduces both female and overall Nb ; reductions are larger in high-fecundity species with high juvenile mortality and increase when multiple reproductive cycles are skipped. Simulated data for six model species showed that both intermittent breeding and litter-size constraints increase Ne , but only slightly. We show how to quantitatively account for these effects, which are important to consider when (1) using Nb to estimate Ne , or (2) drawing inferences about male reproductive success based on estimates of female Nb .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call