Abstract
We show the relationship between the intermittency of turbulence and the type of stratification for different atmospheric situations during the SABLES98 field campaign. With this objective, we first demonstrate the scaling behaviour of the velocity structure functions corresponding to these situations; next, we analyze the curvature of the scaling exponents of the velocity structure functions versus the order of these functions (ζ p vs. p), where ζ p are the exponents of the power relation for the velocity structure function with respect to the scale. It can be proved that this curve must be concave, under the assumption that the incompressible approximation does not break down at high Reynolds numbers. The physical significance of this kind of curvature is that the energy dissipation rate increases as the scale of the turbulent eddies diminishes (intermittency in the usual sense). However, the constraints imposed by stability, preventing full development of the turbulence, allow the function ζ p versus p to show any type of curvature. In this case, waves of high frequency trapped by the stability, or bursts of turbulence caused by the breaking up of internal waves, may produce a redistribution of energy throughout the scaling range. Due to this redistribution, the variation with the scale of the energy dissipation rate may be smaller (decreasing the intermittency) and, even in more stable situations, this rate may diminish (instead of increasing) as the scale diminishes (convex form of the curve ζ p vs. p).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.