Abstract

We experimentally investigate discrete avalanches of grains, driven by a low inflow rate, on an erodible pile in a channel. We observe intermittency between one regime, in which avalanches are quasiperiodic and system spanning, and another, in which they pass at irregular intervals and have a power-law size distribution. Observations are robust to changes of inflow rate and grain type and require no tuning of external parameters. We demonstrate that the state of the pile's surface determines whether avalanche fronts propagate to the end of the channel or stop partway down, and we introduce a toy model for the latter case that reproduces the observed power-law size distribution. We suggest direct applications to avalanches of pharmaceutical and geophysical grains, and the possibility of reconciling the "self-organized criticality" predicted by several authors with the hysteretic behavior described by others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.