Abstract
We analyze the interaction of three Hopf modes and show that locally a bifurcation gives rise to intermittency between three periodic solutions. This phenomenon can occur naturally in three-parameter families. Consider a vector fieldf with an equilibrium and suppose that the linearization off about this equilibrium has three rationally independent complex conjugate pairs of eigenvalues on the imaginary axis. As the parameters are varied, generically three branches of periodic solutions bifurcate from the steady-state solution. Using Birkhoff normal form, we can approximatef close to the bifurcation point by a vector field commuting with the symmetry group of the three-torus. The resulting system decouples into phase amplitude equations. The main part of the analysis concentrates on the amplitude equations in R3 that commute with an action ofZ2+Z2+Z2. Under certain conditions, there exists an asymptotically stable heteroclinic cycle. A similar example of such a phenomenon can be found in recent work by Guckenheimer and Holmes. The heteroclinic cycle connects three fixed points in the amplitude equations that correspond to three periodic orbits of the vector field in Birkhoff normal form. We can considerf as being an arbitrarily small perturbation of such a vector field. For this perturbation, the heteroclinic cycle disappears, but an “invariant” region where it was is still stable. Thus, we show that nearby solutions will still cycle around among the three periodic orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.