Abstract

In this paper we present some results on the nonstatistical fluctuation in the 1-dimensional (1-d) density distribution of singly charged produced particles in the framework of the intermittency phenomenon. A set of nuclear emulsion data on 16O-Ag/Br interactions at an incident momentum of 200A GeV/c, was analyzed in terms of different statistical methods that are related to the self-similar fractal properties of the particle density function. A comparison of the present experiment with a similar experiment induced by the 32S nuclei and also with a set of results simulated by the Lund Monte Carlo code FRITIOF is presented. A similar comparison between this experiment and a pseudo-random number generated simulated data set is also made. The analysis reveals the presence of a weak intermittency in the 1-d phase space distribution of the produced particles. The results also indicate the occurrence of a nonthermal phase transition during emission of final-state hadrons. Our results on factorial correlators suggests that short-range correlations are present in the angular distribution of charged hadrons, whereas those on oscillatory moments show that such correlations are not restricted only to a few particles. In almost all cases, the simulated results fail to replicate their experimental counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call