Abstract
Consider a nonlinear stochastic wave equation driven by space-time white noise in dimension one. We discuss the intermittency of the solution, and then use those intermittency results in order to demonstrate that in many cases the solution is chaotic. For the most part, the novel portion of our work is about the two cases where (1) the initial conditions have compact support, where the global maximum of the solution remains bounded, and (2) the initial conditions are positive constants, where the global maximum is almost surely infinite. Bounds are also provided on the behavior of the global maximum of the solution in Case (2).KeywordsIntermittencyThe stochastic wave equationChaos
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.