Abstract

Electric corrosion of aluminium and copper is investigated experimentally. It is found that the electric corrosion of copper is higher than the electric corrosion of aluminium. It is also clarified that the intrinsic diffusion coefficient of Cu is higher than the intrinsic diffusion coefficient of Al in each phase, so inert markers move to Cu. Copper has a higher electric conductivity, higher thermal conduction, and lower material cost than gold, so it is possible to use Cu instead of Au for wire bonding in microelectronics packaging, because the thin Al pad (1.2 μm thickness) can prevent gold and copper corrosion. Intermetallics disappearance and Kirkendall shift rates calculation methods are proposed. Methods involve mass conservation law and concentration profiles change during mutual diffusion. Intermetallics disappearance and Kirkendall shift rates in Al-Cu (Al is thin layer on Cu), Cu-Al (Cu is thin layer on Al), Al-Au, Zn-Cu, and Cu-Sn systems are analyzed theoretically using literature experimental data. Diffusion activation energies and pre-exponential coefficients for Cu-Sn system were calculated combining literature experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call