Abstract

Two new intermetallic compounds, Yb(2)Ga(4)Ge(6) and Yb(3)Ga(4)Ge(6), were obtained from reactions in molten Ga. A third compound, Eu(3)Ga(4)Ge(6), was produced by direct combination of the elements. The crystal structures of these compounds were studied by single-crystal X-ray diffraction. Yb(2)Ga(4)Ge(6) crystallizes in an orthorhombic cell with a=4.1698(7), b=23.254(4), c=10.7299(18) A in the polar space group Cmc2(1). The structure of RE(3)Ga(4)Ge(6) is monoclinic, space group C2/m, with cell parameters a=23.941(6), b=4.1928(11), c=10.918(3) A, beta=91.426(4) degrees for RE=Yb, and a=24.136(2), b=4.3118(4), c=11.017(1) A, beta=91.683(2) degrees for RE=Eu. The refinement [I>2 sigma(I)] converged to the final residuals R(1)/wR(2)=0.0229/0.0589, 0.0411/0.1114, and 0.0342/0.0786 for Yb(2)Ga(4)Ge(6), Yb(3)Ga(4)Ge(6), and Eu(3)Ga(4)Ge(6), respectively. The structures of these two families of compounds can be described by a Zintl concept of bonding, in which the three-dimensional [Ga(4)Ge(6)](n-) framework serves as a host and electron sink for the electropositive RE atoms. The structural relation of RE(3)Ga(4)Ge(6) to of Yb(2)Ga(4)Ge(6) lies in a monoclinic distortion of the orthorhombic cell of Yb(2)Ga(4)Ge(6) and reduction of the [Ga(4)Ge(6)] network by two electrons per formula unit. The results of theoretical calculations of the electronic structure, electrical transport data, and thermochemical and magnetic measurements are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.