Abstract
Although single-metal-site (SMS) catalysts have long been explored for the electrochemical CO2 reduction reaction (EC-CO2RR), the reactivity and selectivity of SMS catalysts remain rather low due to the competing hydrogen evolution reaction (HER). To improve the selectivity, in this work, a novel intermetallic particle of CuNi is decorated on the N-doped carbon substrate, which was first precisely fabricated by scarifying the bimetal-doped metal-organic framework (MOF). Thanks to the neighboring synergistic functions of Cu and Ni sites, CuNi/NC prominently boosts the electroreduction of CO2, far more than the SMS catalysts of Cu/NC and Ni/NC. Further, CuNi/NC presents superior selectivity toward CO with faradaic efficiency over a wide range of potentials (surpassing 90% at 0.6-1.0 V vs RHE, up to 98% at 0.6 V vs RHE) and excellent durability. The experimental results and theoretical calculations reveal that the Ni species can be highly activated due to the neighboring Cu species, which considerably facilitates the formation of an intermediate of COOH* and consequently enhances the selectivity of the reduction of CO2 to CO. This work paves a general way to precisely fabricate catalysts with multiple metal species and also demonstrates the significant synergetic efficiency between the neighboring sites to improve the catalytic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.