Abstract

In double-level-metal CMOS production processes, the silicate-based spin-on-glass (SOG) planarization scheme, even without a nitride passivation layer, is observed to cause N-field device failure which appears to be due to positive charges trapped in the SOG sandwich layer. Ultraviolet (UV) exposure and backbias are found to be able to eliminate the field and active device leakage. A mechanism is proposed to explain the formation of the positive charges and the UV curing phenomena. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.