Abstract

The transfer of phospholipids between two membrane substrates catalyzed by a soluble protein fraction from Rhodopseudomonas sphaeroides has been demonstrated. The assay employs purified intracytoplasmic membrane (ICM) vesicles derived from cells of R. sphaeroides grown on [3H]acetate as the phospholipid donor substrate and phosphatidylcholine (70%)/phosphatidylethanolamine (30%) unilamellar liposomes containing [14C]triolein, a nontransferable marker, as the acceptor substrate for transferred phospholipids. Incubation of these two membrane substrates with a 40 to 80% (NH4)2SO4 protein fraction from R. sphaeroides results in the transfer of tritium-labeled ICM phospholipids to the acceptor membrane substrate. Upon completion of the incubation period, the donor ICM vesicles are quantitatively separated from the acceptor liposomes by precipitation with antibody prepared against whole, purified ICM vesicles. Phospholipid transfer is linear with respect to time and protein concentration, is inhibited by trypsin and heat, and shows an absolute dependence upon the presence of acceptor liposomes and the 40 to 80% (NH4)2SO4 protein fraction. Control experiments indicate that no fusion of the donor and acceptor membrane occurs during the incubation period and that, following prolonged incubation there is no detectable degradation of the labeled lipid components. Preliminary data on the phospholipid specificity of the transfer reaction is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call