Abstract

Woven fabric composites are increasingly being used in composite structures for applications in the aircraft, marine, and automotive industries. With emerging low-cost processing techniques for composite materials, the role of fabric architectures in sustaining low, intermediate, and high velocity impact loads is a subject of interest. An example of a low-cost process is the out-of-autoclave, vacuum assisted resin transfer molding (VARTM) technique. The present study evaluates the intermediate velocity impact response of two commonly used structural carbon fabric laminates produced from plain and 2/2 twill woven fabrics, processed using VARTM. A series of impact tests have been performed on the all plain, all twill and hybrid plain-twill weave carbon/epoxy laminates. All laminates studied were covered with a polycarbonate facing in order to enhance the impact resistance of the carbon/epoxy laminates. The perforation mechanism, ballistic limit, and damage evolution of each laminate has been studied. The results from the experiments are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call