Abstract

The assembly of biomolecules and ions (e.g., biomineralization process) generates many intricate structures in nature. However, human beings' control over the assembly processes of ions is in its infant stage compared with nature. Here, it is reported that the intermediate valence metal ions in the electrolyte can influence the growth speed of certain crystal facets and in turn adjust the shape of the electrodeposits created by anodic electrodeposition. This is because the intermediate valence metal ions (e.g., Pb2+ , Mn2+ , etc.) can be oxidized by the electrochemically oxidized high valence ions (e.g., Ag2+ and Ag3+ ). Therefore, the concentration of the electrochemically oxidized high valence ions can be controlled by the intermediate valence ions, affecting the growth kinetics of the electrodeposits. Taking the anodic electrodeposition of Ag7 O8 NO3 as an example, the role of intermediate valence ions in tailoring the shape of the Ag7 O8 NO3 electrodeposits is demonstrated. Moreover, the growth location of the second-order structure can be controlled by the intermediate valence metal ions. Additionally, the designed complex microarchitectures starting from certain crystal facets to form hollow nanoframes can be selectively etched. The control capability over the electrochemical assembly process of metal ions is significantly strengthened by introducing intermediate valence ions into the electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.